Angel: a new large-scale machine learning system
نویسندگان
چکیده
Machine Learning (ML) techniques now are ubiquitous tools to extract structural information from data collections. With the increasing volume of data, large-scale ML applications require an efficient implementation to accelerate the performance. Existing systems parallelize algorithms through either data parallelism or model parallelism. But data parallelism cannot obtain good statistical efficiency due to the conflicting updates to parameters while the performance is damaged by global barriers in model parallel methods. In this paper, we propose a new system, named Angel, to facilitate the development of large-scale ML applications in production environment. By allowing concurrent updates to model across different groups and scheduling the updates in each group, Angel can achieve a good balance between hardware efficiency and statistical efficiency. Besides, Angel reduces the network latency by overlapping the parameter pulling and update computing and also utilizes the sparseness of data to avoid the pulling of unnecessary parameters. We also enhance the usability of Angel by providing a set of efficient tools to integrate with application pipelines and provisioning efficient fault tolerance mechanisms. We conduct extensive experiments to demonstrate the superiority of Angel.
منابع مشابه
A New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems
There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملStudies with a Generalized Neuron Based PSS on a Multi-Machine Power System
An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کامل